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Abstract. The decoupling technique has been applied to nonlinear composites of coated
spherical inclusions. The method allows us to convert established results in linear composites to
nonlinear ones with identical microstructure. Results are compared with those of the variational
method and hence the quality of the approximation can be examined. For coated spheres with
nonlinear shell embedded in a linear host, the results show that a relatively thin nonlinear
coating may approach the enhancement effects of a solid nonlinear sphere of the same radius
under appropriate conditions.

1. Introduction

Recently, the physics of nonlinear composites has attracted much attention because of their
applications in engineering and physics [1, 2]. Over the past few years, much effort has
been devoted to the calculations of the effective response of composites in which two or
more isotropic dielectric materials are randomly mixed together. In these composites the
constituent dielectric functions depend on the applied electric field. The effective response
depends on the applied field as well as on the volume fractions of the constituents and
microstructure. In the case of a three-component composite, large effective nonlinear
response may be obtained for some microstructures in which the nonlinear component
is placed consistently in the high-field regions of the composite.

Nonlinear composites made of coated spherical inclusions embedded in a host medium
have been extensively studied [3–5] because the nonlinearity can be enhanced. For a coated
spherical inclusion with a nonlinear shell, it was shown that a large enhancement can be
achieved per unit volume of nonlinear material [6–8]. These interesting and useful cases
are generally intractable analytically because one has to solve nonlinear boundary-value
problems which involve the detailed microstructure of the composite [1].

The object of the present investigation is threefold. First, previous studies were restricted
primarily to weakly nonlinear composites, in which the nonlinearity can be treated as a
small perturbation [6, 7]. In this work, we want to extend the study to strongly nonlinear
composites [9, 10] of coated spheres. In this case, the usual perturbative approach becomes
invalid [7]. Alternative approaches were developed based on the variational method [10]
and on the decoupling technique [11]. Second, these approaches are generally approximate
[10, 11]. While both approaches are able to convert established results on linear composites
to nonlinear ones with identical microstructure and provide reasonable estimates of the
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effective nonlinear response, we want to compare their results with each other and hence
examine the quality of the approximations. Third, we want to extend the study to coated
spheres with nonlinear shell embedded in a linear host and provide further evidence for the
enhancement of nonlinearity.

The paper is organized as follows. In the next section, we review the established
linear response of spherical inclusions and concentric spheres. Given these results, we
shall generate approximate expressions for the effective response of strongly nonlinear
composites via the decoupling technique. In section 3, we evaluate the strongly nonlinear
response of spherical inclusions by the decoupling technique and compare the results with
published variational calculations. In section 4, we perform similar calculations for the
strongly nonlinear response of concentric spheres. In section 5, we consider some exactly
solvable cases of strongly nonlinear spherical inclusions and concentric spheres with a
nonlinear core embedded in a linear host. In these cases, we demonstrate that the decoupling
technique indeed gives exact results. Lastly, in section 6, we consider concentric spheres
with nonlinear shell embedded in a linear host. Since no available result exists for this case,
we shall perform both the variational and decoupling calculations. Discussions on related
problems will be given.

2. Linear response of spherical inclusions and concentric spheres

In this section, we consider the linear characteristic

D = εE (1)

where the dielectric constantε takes on different values in the inclusion and host regions.
Let us consider a microstructure consisting of identical coated spheres with a spherical core
of radiusa1 and dielectric constantεc, surrounded by a concentric spherical shell of radius
a2 > a1 and dielectric constantεs , suspended in a host medium ofεm, with the application of
an external uniform fieldE0. Without loss of generality, we leta2 = 1 anda1 = y1/3 < 1.
The potential can be solved by standard electrostatics:

ϕc(r, θ) = −cE0r cosθ r < a1 (2)

ϕs(r, θ) = −E0(f r − gyr−2) cosθ a1 < r < a2 (3)

ϕm(r, θ) = −E0(r − br−2) cosθ r > a2 (4)

where the coefficientsb, c, f andg are obtained from the boundary conditions:

b = (εs − εm) + (εm + 2εs)xy

(εs + 2εm) + 2(εs − εm)xy
(5)

c = 3εm(1 − x)

(εs + 2εm) + 2(εs − εm)xy
(6)

f = 3εm

(εs + 2εm) + 2(εs − εm)xy
(7)

g = 3εmx

(εs + 2εm) + 2(εs − εm)xy
(8)

and

x = εc − εs

εc + 2εs

. (9)

In the dilute limit, the volumeVi of inclusion is much smaller than the volumeV of the
whole composite. Letp = Vi/V be the volume fraction of inclusion, we obtain the effective
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linear response of a small volume fraction of coated spheres embedded in a host medium
[7]:

εe = εm + p
3εm[(εs − εm) + (εm + 2εs)xy]

(εs + 2εm) + 2(εs − εm)xy
. (10)

In the limit of identical core and shell materials, i.e.εc = εs = εi , or x = 0, we recover the
well known results for a spherical inclusion of radiusa and dielectric constantεi embedded
in a host medium ofεm:

ϕi(r, θ) = −cE0r cosθ r < a (11)

ϕm(r, θ) = −E0(r − br−2) cosθ r > a (12)

where the coefficientsb andc are

b = εi − εm

εi + 2εm

(13)

c = 3εm

εi + 2εm

. (14)

The effective linear response is given by

εe = εm + p
3εm(εi − εm)

εi + 2εm

. (15)

The same result can be obtained by lettingεs = εi andy = 0 (vanishing core) orεc = εi

and y = 1 (vanishing shell). Given the linear results, we shall generate approximate
expressions for the effective nonlinear response of strongly nonlinear composites via the
variational method [10] and the decoupling technique [11] in subsequent studies.

3. Strongly nonlinear response of spherical inclusions

In this section, we consider the strongly nonlinear characteristic

D = χ |E|2E (16)

where the nonlinear coefficientχ takes on different values in the inclusion and host regions.
Although we discuss cubic nonlinearity [9–11] for illustration, generalization can readily be
made to arbitrary nonlinearity. Let us consider a spherical inclusion of nonlinear coefficient
χi , embedded in a host medium ofχm, with the application of an external uniform fieldE0.
In the variational approach [10], we used equations (11) and (12) as trial potential functions
and treated the as-yet undetermined coefficientb (c = 1 − b) as a variational parameter.
We then minimized the energy functional:

W [ϕ] =
∫

V

D · E dV (17)

with respect tob and obtained approximate results for the effective nonlinear responseχe.
In this work, we shall use the decoupling technique [11] by converting equation (15) to
strongly nonlinear response through self-consistent equations. As shown in [10] and [11],
the variational method gives the rigorous upper bound while the decoupling technique gives
the rigorous lower bound for the effective nonlinear response, namely,

χe(decoupling) 6 χe(exact) 6 χe(variational). (18)

It is clear that the two methods are indispensable for estimating the effective nonlinear
response of intractable boundary-value problems, such as those of strongly nonlinear
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composites. If the two bounds coincide, they both give the exact result. On the other
hand, if the two bounds are tight, the estimates are indeed good approximations.

To proceed, we compute the mean-square local fields in the inclusion and host regions
[11]:

〈E2
i 〉 = 1

p

∂εe

∂εi

E2
0 =

(
3εm

εi + 2εm

)2

E2
0 (19)

〈E2
m〉 = 1

1 − p

∂εe

∂εm

E2
0 =

(
1 + 2p(εi − εm)(2εi + εm)

(1 − p)(εi + 2εm)2

)
E2

0. (20)

The local field in the host region is of orderE0 as it must be. We make the following
substitutions:

εi = χi〈E2
i 〉 (21)

εm = χm〈E2
m〉 (22)

and solve equations (19) and (20) self- consistently for the mean-square local fields. The
effective nonlinear response can be calculated from equation (15). In figure 1, we plot the
effective strongly nonlinear responseχe/χm againstχi/χm at a volume fractionp = 0.08.
The parameters are chosen so as to compare with published variational calculations [10].
Results are presented for the variational method (dotted line) and the decoupling technique
(solid line). The two approximations agree reasonably well especially at low contrast.

Figure 1. For spherical inclusions, the effective strongly nonlinear responseχe/χm is plotted
againstχi/χm at a volume fractionp = 0.08. Results are presented for the variational method
(dotted line) and the decoupling technique (solid line). The two approximations agree reasonably
well especially at low contrast.

4. Strongly nonlinear response of concentric spheres

In this section, we consider coated spheres with nonlinear coefficientsχc, χs and χm and
calculate the effective strongly nonlinear response. In the variational approach [10], we used
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equations (2)–(4) as trial potential functions and treated the as-yet undetermined coefficients
f andg (b = 1 − f + gy while c = f − g) as variational parameters. We minimized the
energy functionalW [ϕ] and obtained the effective nonlinear response. In this work, we use
the decoupling technique [11] and compute the mean-square local fields in the core, shell
and host regions [11]. Note that volume fraction of core =py while volume fraction of
shell = p(1 − y):

〈E2
c 〉 = 1

py

∂εe

∂εc

E2
0 =

(
3εm(1 − x)

(εs + 2εm) + 2(εs − εm)xy

)2

E2
0 (23)

〈E2
s 〉 = 1

p(1 − y)

∂εe

∂εs

E2
0 = 9ε2

m(1 + 2x2y)

[(εs + 2εm) + 2(εs − εm)xy]2
E2

0 (24)

〈E2
m〉 = 1

1 − p

∂εe

∂εm

E2
0 = [1 + O(p)]E2

0

= E2
0 + 2pE2

0

(1 − p)[(εs + 2εm) + 2(εs − εm)xy]2
[(εs − εm)(εm + 2εs)

+(8ε2
s − εsεm + 2ε2

m)xy + (2εs + εm)(4εs − εm)x2y2]. (25)

Figure 2. For coated spheres, the effective strongly nonlinear responseχe/χm is plotted against
χs/χm for χc/χs = 8 at a volume fractionp = 0.08. Results are displayed into two separate
groups: y = (0.99)3 (upper curves) andy = (0.2)3 (lower curves). In each group, results are
presented for the variational method (dotted lines) and the decoupling technique (solid lines).

Again the local field in the host region is of orderE0. We further make the following
substitutions:

εc = χc〈E2
c 〉 (26)

εs = χs〈E2
s 〉 (27)

εm = χm〈E2
m〉 (28)

and solve equations (23)–(25) self-consistently for the local fields. The effective nonlinear
response can be calculated from equation (10). In figure 2, we plot the effective strongly
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nonlinear responseχe/χm againstχs/χm for χc/χs = 8 at a volume fractionp = 0.08. The
results are displayed in two separate groups:y = (0.99)3 (upper curves) andy = (0.2)3

(lower curves). The parameters are chosen so as to compare with published variational
calculations [10]. As evident from figure 2, the two approximations agree reasonably well
especially at low contrast. In figure 3, forχc/χs = 1/8, the results are displayed into two
separate groups:y = (0.2)3 (upper curves) andy = (0.99)3 (lower curves). Again the two
approximations agree reasonably well.

Figure 3. Similar to figure 2 but forχc/χs = 1/8. Results are displayed into two separate
groups: y = (0.2)3 (upper curves) andy = (0.99)3 (lower curves). In each group, results are
presented for the variational method (dotted lines) and the decoupling technique (solid lines).

5. Some exactly solvable cases

In this section, we consider some exactly solvable microstructures [12]. First we consider
strongly nonlinear spheres embedded in a linear host with a uniform applied fieldE0. Since
the host medium is linear, the effective nonlinear response is weakly nonlinear [13, 14]. In
this case, we letεi = χi〈E2

i 〉, where〈E2
i 〉 will be solved from the following self-consistent

equation [11]:

〈E2
i 〉 = 1

p

∂εe

∂εi

E2
0 =

(
3εm

χi〈E2
i 〉 + 2εm

)2

E2
0. (29)

As the local fieldEi is uniform in the inclusion, the decoupling scheme [11] is indeed exact.
As a result, equation (29) gives the exact local field〈E2

i 〉. Solving 〈E2
i 〉 numerically and

putting εi = χi〈E2
i 〉 into equation (15), we obtain the field-dependent effective response

εe(E0). In figure 4, we plotεe(E0) againstE0 for χi = 1, εm = 3 at volume fraction
p = 0.08. It is observed thatεe(E0) increases monotonically withE0 and saturates
at both low fields (E0 6 0.1) and high fields (E0 > 200). The limiting values ofεe

agree with those calculated directly from equation (15); we findεe(E0 → 0) = 2.64
and εe(E0 → ∞) = 3.72 respectively. The effective nonlinear response is strongly field
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Figure 4. For strongly nonlinear spheres embedded in a linear host, the field-dependent effective
responseεe(E0) is plotted againstE0 for χi = 1, εm = 3 at volume fractionp = 0.08.

dependent. It is also interesting to note that whenE0 = √
3, χiE

2
0 = εm, the contrast

between inclusion and host vanishes identically and henceεe = εm.
For coated spherical inclusions with nonlinear core, we letεc = χc〈E2

c 〉, where〈E2
c 〉

can be solved from the following self-consistent equation [11]:

〈E2
c 〉 = 1

py

∂εe

∂εc

E2
0 =

(
3εm(1 − x)

(εs + 2εm) + 2(εs − εm)xy

)2

E2
0. (30)

Again, as the core fieldEc is uniform, the decoupling scheme is exact. Moreover, it can be
shown that the problem of a multi-coated sphere with nonlinear core can be solved exactly
[15]. Solving 〈E2

c 〉 numerically and puttingεc = χc〈E2
c 〉 into equation (10), we obtain the

field-dependent effective responseεe(E0). In figure 5, we plotεe(E0) against the thickness
parametery for χc = 1, εs = 2, εm = 3 at volume fractionp = 0.08. Results are presented
for E0 = 0.1 andE0 = 200. The results for nonlinear spherical inclusions are plotted for
comparison. Asy increases, i.e. from small to large core,εe changes monotonically from
the linear result towards the results of nonlinear spheres in both low and high fields.

6. Concentric spheres with nonlinear shell embedded in linear host

In this section, we consider coated spheres with a linear core and a strongly nonlinear shell,
embedded in a linear host with a uniform applied fieldE0. In this case, the variational
approach has to be modified slightly to take care of mixed characteristics [16]:

δW [ϕ] =
∫

V

D · δE dV = 0. (31)

The energy functional is of the form [16]

W [ϕ] = 1

2

∫
V

ε|E|2 dV + 1

4

∫
V

χ |E|4 dV (32)
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Figure 5. For coated spheres with strongly nonlinear core, the field-dependent effective response
εe(E0) is plotted against the thickness parametery for εm = 3 at volume fractionp = 0.08.
Results are displayed into two separate groups:E0 = 200 (upper curves) andE0 = 0.1 (lower
curves). The exact results for nonlinear spheres (dashed lines) are plotted for comparison.

and the variational parametersf andg will become field dependent. The field-dependent
effective response can be calculated fromεe(E0) = εe + χeE

2
0. In figure 6, we plotεe(E0)

against the thickness parametery for χs = 1, εc = 2, εm = 3 at volume fractionp = 0.08.
Results are presented forE0 = 0.1 andE0 = 200. ForE0 = 200, asy increases, i.e. from
thick to thin shell,εe(E0) decreases only slightly from the exact nonlinear sphere result
(y → 0). Wheny → 1 and the shell becomes thin,εe(E0) decreases drastically towards
the linear result. The results indicate that a relatively thin nonlinear shell may approach
the effects of a solid nonlinear sphere of the same radius, consistent with the fact that a
large enhancement can be achieved per unit volume of nonlinear coating material [6–8].
A similar conclusion is obtained for lower fields, but at a somewhat thicker coating. For
E0 = 0.1, asy increases, i.e. from thick to thin shell,εe(E0) increases only slightly from
the nonlinear sphere result (y → 0). Wheny → 1 and the shell becomes thin,εe(E0)

increases less rapidly towards the linear result.
We are now in a position to convert the effective linear response (equation (10)) to the

field-dependent effective response of a nonlinear shell via the decoupling technique [11].
Let εs = χs〈E2

s 〉, where 〈E2
s 〉 can be solved from the following self-consistent equation

[11]:

〈E2
s 〉 = 1

p(1 − y)

∂εe

∂εs

E2
0 = 9ε2

m(1 + 2x2y)

[(εs + 2εm) + 2(εs − εm)xy]2
E2

0. (33)

In figure 6, we also plot the result ofεe(E0) from the decoupling technique for comparison.
As evident from figure 6, the two approximations agree quite well.
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Figure 6. For coated spheres with strongly nonlinear shell, the field-dependent effective response
εe(E0) is plotted against the thickness parametery for εm = 3 at volume fractionp = 0.08.
Results are displayed into two separate groups:E0 = 200 (upper curves) andE0 = 0.1 (lower
curves). In each group, results are presented for the variational method (dotted lines) and the
decoupling technique (solid lines) and the exact results for nonlinear spheres (dashed lines) are
plotted for comparison.

7. Discussions and conclusions

Although the present investigation deals with staticD–E response, with slight modifications
the treatments can be readily generalized to finite frequencies. We expect even larger
enhancement of nonlinearity to occur in composites of metallic particles coated with
nonlinear dielectric materials, due to surface-plasmon resonance [3, 6]. If the nonlinear
materials are consistently placed in regions of high field, the nonlinear effect should be
enormously enhanced.

In conclusion, the decoupling technique has been applied to nonlinear composites of
coated spherical inclusions. The method allows us to convert effective response in linear
composites to nonlinear ones with identical microstructure. Results are compared with those
of the variational method and good agreements between the two methods are found.
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